What’s your opinion on String theory? Does this theory excite
you? Mathematically, it seems perfect and quite amazing. Few aspects about it
propose not one but several diverse dimensions, ones we’re not usually aware
of, however we may be interacting with some of them all the time, entirely
oblivious. If these dimensions are to be true, what would these dimensions look
like and how might they affect us? And what is a dimension anyway?
Two dimensions is just a point. We may remember the coordinate
plane from math class with the x and y-axes. Then there’s the third dimension,
depth (the z-axis).
Another way to look at it is latitude, longitude, and
altitude, which can locate any object on Earth. These are followed by the
fourth dimension, space-time. Everything has to occur somewhere and at a
certain time. After that, things get weird.
Superstring theory, one of the leading theories today to
explain the nature of our universe, contends that there are 10 dimensions.
That’s nine of space and one of time. Throughout the 20th century, physicists
erected a standard model of physics. It explains pretty well how subatomic
particles behave, along with the forces of the universe, such as
electromagnetism, the stronger and weaker nuclear forces, and gravity. But that
last one standard physics can’t account for.
Even so, this model has allowed us the startling ability to
peer back to the moments just after the Big Bang took place. Before that,
scientists believe that everything was condensed into a single point of
infinite density and temperature, known as the singularity, which exploded,
forming everything in the observable universe today. But the problem is, we
can’t peer back beyond that point. That’s where string theory comes in. The
innovations it provides can account for gravity and help explain what existed
before the Big Bang.
So what are these other dimensions and how might we experience
them? That’s a tricky question, but physicists have some idea of what it might
be like. Really, other dimensions are related to other possibilities. How we
interact with these is difficult to explain. At the fifth dimension other
possibilities for our world open up.
You’d be able to move forward or backward in time, just as you
can in space, say while walking down a corridor. You’d also be able to see the
similarities and differences between the world we inhabit and other possible
ones. In the sixth dimension, you’d move along not a line but a plane of
possibilities and be able to compare and contrast them. In the fifth and sixth
dimensions, no matter where in space you inhabit, you’d witness every possible
permutation of what can occur past, present, and future.
In the seventh, eighth, and ninth dimensions, the possibility
of other universes open up, ones where the very physical forces of nature
change, places where gravity operates differently and the speed of light is
different. Just as in the fifth and sixth dimensions, where all possible
permutations in the universe are evident before you, in the seventh dimension
every possibility for these other universes, operating under these new laws,
becomes clear.
In the higher dimensions, you’d witness every possible world
future, past, and present, simultaneously.
In the eighth dimension, we reach the plane of all possible
histories and futures for each universe, branching out into infinity. In the
ninth dimension, all universal laws of physics and the conditions in each
universe become apparent. Finally, in the tenth dimension, we reach the point
where everything becomes possible and imaginable.
For string theory to work, six dimensions are required for it
to operate in a manner that’s consistent with nature. Since these other
dimensions are on such a small scale, we’ll need another way to find evidence
of their existence. One way would be to peer into the past using powerful
telescopes which can hunt for light from billions of years ago, when the
universe was first born.
String theory has an answer for what came before the Big Bang.
The universe was made up of nine perfectly symmetrical dimensions, the tenth
being time.
Meanwhile, the four fundamental forces were united at
extremely high temperatures. The structure was under high pressure. It soon
became unstable and broke in two. This became two different forms of time and
led to the three dimensional universe we recognize today. Meanwhile, those
other six dimensions shrunk way down to the subatomic level.
As for gravity, string theory contends that the basic units of
the universe are strings— infinitesimally small, vibrating filaments of energy.
They’re so tiny, they’d be measured on the Planck scale—the smallest scale
known to physics.
Each string vibrates at a specific frequency and represents a
certain force.
Gravity and all the other forces are therefore a result of the
vibrations of specific strings.
One problem is that this theory is hard to test, outside of
advanced mathematical equations. Some experiments have been done using
supercomputers, which can run simulations and make predictions.
That isn’t exactly enough to prove that it’s true, but it’s
helpful and lends support. Besides astronomical observations, physicists are
hopeful that experiments with the Large Hadron Collider at CERN, on the
Franco-Swiss border, may offer evidence of extra dimensions, lending string
theory greater credence.
Post A Comment:
0 comments: